

Groupe transversal Inondations

Contact : <u>gt.inondations@spw.wallonie.be</u> Version 2023_11

Dimensionnement d'un ouvrage de rétention/infiltration Utilisation de la feuille de calcul : démarche pas à pas

Sécurité

Aucune connexion internet n'est requise pour l'exécution de la feuille de calcul. Aucune macro n'est requise pour l'exécution de la feuille de calcul.

Tout message indiquant le contraire doit éveiller votre attention. Il se pourrait que le feuille soit corrompue. Dans ce cas, il est recommandé de télécharger un formulaire vierge sur le site de référence.

Le site internet de référence du SPW est https://inondations.wallonie.be.

Pour un fichier nouvellement téléchargé, un message vous avertit que le fichier est « MARQUE COMME FINAL ». Ceci est normal et vous devez cliquer sur « Modifier quand même » pour commencer à travailler.

(i) MARQUÉ COMME FINAL <u>Un auteur a marqué ce classeur comme étant final pour empêcher de le modifier.</u> Modifier quand même

Présentation de la feuille de calcul

Deux onglets :

- Infiltration seule
- Infiltration et rejet

Des informations sont partagées entre les onglets. Il est donc <u>obligatoire</u> de débuter avec le calcul d'infiltration seule.

Validation des messages utilisateur

Le calcul ne s'effectuera que si les 3 ou 4 messages d'informations sont validés. La validation se réalise en introduisant une valeur **1** à la place du **0** préencodé.

- 1^{er} onglet : 2 cellules en haut de formulaire, 1 cellule après l'encodage des surfaces
- 2^{ème} onglet : 1 cellule après l'encodage des surfaces, les 3 autres cellules étant liées au premier onglet

Etapes typiques de calcul

- 1. Encodage des surfaces contributives
- 2. Choix des paramètres physiques du système
- 3. Analyse des résultats
- 4. Remise en cause des paramètres/Itérations jusqu'à obtention d'une solution adaptée

Les 3 premières étapes sont décrites dans la suite de ce document pour chaque onglet.

Encodage des informations de base du projet : localisation et surfaces associées à UN système de rétention

- Placez-vous dans l'onglet Infiltration seule (normalement l'onglet ouvert par défaut).
- Lisez les messages en haut de document et, en cas d'accord, validez en mettant 1 dans chaque case à droite
- Encodez et/ou sélectionnez la commune où se situe le projet **(I)**. Le formulaire sélectionnera les données pluviométriques adéquates qui sont embarquées dans le fichier de calcul (inaccessibles pour l'utilisateur).
- Encodez la surface de référence (II). Il s'agit généralement de la (des) parcelle(s) du projet.
- Renseignez les surfaces incidentes à gérer par le système (III).

Calcul automatique de la somme des surfaces incidentes et du coefficient moyen de ruissellement (IV).

J'ai vérifié que la présente fiche de calcul correspond bien à la **dernière version disponible** sur le site internet du Service public de Wallonie - https://inondations.wallonie.be/

Je déclare avoir **lu et compris** le guide technique qui accompagne la présente feuille de calcul.

Ville ou Commune :	S	SPRIMONT		•	Ι
Surface de référence du projet [m²] :		600	п		

Surfaces incidentes par type d'occupation du sol

	coeff.		surface	
	ruiss.	surface	pondér.	
	[-]	[m²]	[m²]	(notes facultatives)
forêts, bois,	0.05			
prairies, jardins, zones enherbées,				
pelouses, parcs,	0.15			
champs cultivés, landes, broussailles,		ш		
cimetières, dalles empierrement,	0.25	60	15	
dalles gazon, toitures vertes >15cm,	0.4	200	80	
terres battues, chemins de terre,				
toitures vertes <=15cm,	0.5	28	14	
pavés à joints écartés, pavés				
drainants,	0.7			
allées pavées, trottoirs pavés,				
parkings, terrains imperméabilisés,	0.9	52	46.8	
toitures, routes, plans d'eau,	1	250	250	
autre (à justifier)				
autre (à justifier)				
autre (à justifier)				
autre (à justifier)				
Coeff. ruiss, moven et somme des surf.	0.688	590	IV	

Je confirme que le tableau ci-dessus reprend bien, en plus des surfaces affectées par le projet dont le coefficient de ruissellement après travaux est supérieur à celui d'une prairie, tous les terrains dont les eaux sont interceptées et passent par le dispositif à dimensionner.

Ces informations générales sont automatiquement encodées dans les cases correspondantes de l'onglet Infiltration et rejet.

L'encodage de ces données permettra au fichier de déterminer le volume d'eau entrant dans le système à partir des données pluviométriques (I) et des surfaces incidentes (III), une fois que les informations additionnelles sont ajoutées. Ces dernières sont différentes en fonction du système envisagé et sont décrites ci-après.

1

Vérification de l'infiltration seule

- Restez dans l'onglet Infiltration seule.
- Encodez la période de retour (1) entre 2 et 200 ans. Par défaut, elle est paramétrée sur 25 ans.
- Encodez la surface infiltrante du système mis en place (2). Cette information doit être déterminée par l'auteur de projet en fonction des possibilités offerte par le projet et l'espace disponible.
- Encodez le coefficient d'infiltration à saturation du sol (K) (3). Cette information est issue de tests d'infiltration.

La partie **RESULTATS (4)**, calculée automatiquement renseigne la pluie de référence (situation la plus défavorable en fonction de tous les paramètres encodés) à l'aide de sa durée et de son intensité, le débit entrant dans le dispositif (qui est fonction de la pluie de référence et des surfaces drainées) et le débit d'infiltration (qui est fonction de la surface d'infiltration et du coefficient d'infiltration).

Le **Volume d'eau à maîtriser (5)** correspond au volume de stockage d'eau à mettre en place dans le système afin de permettre une totale gestion des eaux pluviales par infiltration.

			_
Période de retour - récurrence 1	25 ans		
Surface infiltrante du dispositif 2	35	m², soit:	5.8% de la surface de référence
Coefficient d'infiltration K 3	7.00E-05	m/s	
RESULTATS :			-
Intensité de la pluie de référence	123.9	l/s/ha	
Durée de la pluie de référence 4	45	minutes	Soit 0 h 45 min
Débit entrant dans le dispositif	5.03	l/s	
Débit sortant par infiltration	1.23	l/s	
Valuura dianu à maîtriana 5	10.2		
volume d'eau à maitriser	10.3	ms	
Temps de vidange par infiltration	2 h 2	20 min	

Le **Temps de vidange par infiltration** du système doit être inférieur à 48h heure afin de pouvoir gérer tout nouvel évènement pluvieux. Si ce n'est pas le cas, le fichier invitera à augmenter la surface infiltrante ou à passer à une combinaison « infiltration et rejet ».

Volume d'eau à maîtriser	10.3	m³
Temps de vidange par infiltration	2 h 2	20 min

Ainsi, sur base du même exemple, si le coefficient d'infiltration est 2 10⁻⁶ m/s, tout autre paramètre restant inchangé, le résultat se présentera comme ceci :

Coefficient d'infiltration K	2.00E-06	m/s	
RESULTATS :			
Intensité de la pluie de référence	1.9	l/s/ha	
Durée de la pluie de référence	13975	minutes	Soit 232 h 55 min
Débit entrant dans le dispositif	0.08	l/s	
Débit sortant par infiltration	0.04	l/s	
Volume d'eau à maîtriser	34.7	m ³	/!\ Temps de vidange trop long (>48h)
Temps de vidange par infiltration	275 h	24 min	La surface infiltrante doit être augmentée

Dimensionnement du système avec rejet

- Ouvrez l'onglet Infiltration et rejet.
- Les informations de base, partie supérieure de la feuille, sont encodées automatiquement sur base de la première feuille. Il n'est plus possible de les modifier ici puisque le passage par l'onglet Infiltration seule est obligatoire.

Dimensionnement d'un ouvrage de rétention/infiltration version 2023 11 [2] INFILTRATION ET REJET

J'ai vérifié que la présente fiche de calcul correspond bien à la dernière version disponible sur le site internet du	1
Service public de Wallonie - https://inondations.wallonie.be/	1
Je déclare avoir lu et compris le guide technique (voir feuille "Infiltration seule")	1

Je déclare avoir lu et compris le guide technique (voir feuille "Infiltration seule")

Surf. de référence du projet [m²] :

600 Ville ou Commune :

SPRIMONT

Surfaces incidentes par type d'occupation du sol

	coeff. ruiss.	surface	surface pondér.	
	[-]	[m²]	[m²]	(notes facultatives)
forêts, bois,	0.05			
prairies, jardins, zones enherbées,				
pelouses, parcs,	0.15			
champs cultivés, landes, broussailles,				
cimetières, dalles empierrement,	0.25	60	15	
dalles gazon, toitures vertes >15cm,	0.4	200	80	
terres battues, chemins de terre,				
toitures vertes <=15cm,	0.5	28	14	
pavés à joints écartés, pavés				
drainants,	0.7			
allées pavées, trottoirs pavés,				
parkings, terrains imperméabilisés,	0.9	52	46.8	
toitures, routes, plans d'eau,	1	250	250	
autre (à justifier)				
autre (à justifier)				
autre (à justifier)				
autre (à justifier)				
Coeff. ruiss. moyen et somme des surf.	0.688	590		

Je confirme que le tableau ci-dessus reprend bien, en plus des surfaces affectées par le projet dont le coefficient de ruissellement après travaux est supérieur à celui d'une prairie, tous les terrains dont les eaux sont interceptées et passent par l'ouvrage de rétention à dimensionner.

J'atteste l'infiltration seule n'est pas possible et je joins en annexe toutes les preuves utiles (voir explications dans le guide technique)

- Les trois premières validations sont déjà encodées à 1 puisque vous avez dû le faire dans l'onglet précédent. La 4^{ème} case atteste que l'infiltration seule n'est pas une option viable.
- Encodez le débit de fuite admissible (A). Par défaut 5l/s/ha, cependant les autorités compétentes (gestionnaire du réseau d'égouttage par exemple) peuvent imposer d'autres valeurs.
- La période de retour est encodée automatiquement sur base de l'onglet précédent.
- Encodez les informations sur le dispositif infiltrant (B) (surface et coefficient d'infiltration). En mettant une surface égale à '0', on considèrera que le système n'infiltre pas et qu'il fait juste de la temporisation avant rejet vers le milieu récepteur. Une valeur K de '0' est également possible avec le même résultat.

La partie supérieure des **RESULTATS (C)**, calculée automatiquement, renseigne la pluie de référence (situation la plus défavorable en fonction de tous les paramètres encodés) à l'aide de sa durée et de son

1

0

intensité, le débit entrant dans le dispositif (qui est fonction de la pluie de référence et des surfaces drainées).

La partie inférieure des résultats **(D)**, calculée automatiquement, renseigne le débit d'infiltration (qui est fonction de la surface d'infiltration et du coefficient d'infiltration) et le débit de vidange autorisé. Cette valeur correspond au débit de fuite admissible **(A)** mis à l'échelle par la surface du projet.

Le **Volume d'eau à maîtriser (E)** correspond au volume de rétention d'eau à mettre en place dans le système afin de permettre une totale gestion des eaux pluviales par infiltration **et** par vidange progressive vers le milieu récepteur (réseau de collecte des eaux pluviales ou voie d'eau de surface).

J'atteste l'infiltration seule n'est pas possible et je joins en annexe toutes les preuves utiles (voir explications dans le guide technique)				
Débit de fuite admissible A	5	l/s/ha		
Période de retour - récurrence	25 ans			
Surface infiltrante du dispositif B	35	m², soit:	5.8% de la surface de référence]
Coefficient d'infiltration K	2.00E-06	m/s		-
RESULTATS :			_	
Intensité de la pluie de référence 🕜	34.0	l/s/ha		
Durée de la pluie de référence	245	minutes	Soit 4 h 05 min	
Débit entrant dans le dispositif	1.38	l/s		-
Débit sortant par infiltration	0.04	/s		
Débit de vidange total autorisé	0.295	/s		
Volume d'eau à maîtriser	15.5	m³		
Temps de vidange E	13 h	03 min]	